
Eliph: Effective Visualization of Code History for
Peer Assessment in Programming Education

Jungkook Park (School of Computing, KAIST)

Yeong Hoon Park (School of Computing, KAIST)

Suin Kim (School of Computing, KAIST)

Alice Oh (School of Computing, KAIST)

Rapid Growth of Online CS Courses

2

year
Students # TAs

Numbers of students and TAs
in online CS courses

Rapid Growth of Online CS Courses

3

year
Students # TAs

Numbers of students and TAs
in online CS courses

Peer assessment involves both

“understanding other’s work” and “giving a proper mark”

Grading Rubric

Program Design

Efficiency

Readability

Assignment Specifications

Difficulties of Peer Assessment in CS

4

Submitted
Programming

Code

Peer assessment involves both

“understanding other’s work” and “giving a proper mark”

Grading Rubric

Program Design

Efficiency

Readability

Assignment Specifications

Difficulties of Peer Assessment in CS

5

Submitted
Programming

Code

Why this code
works?

I’ve never seen
this syntax.

Why did he/she
implement in this way?This code is too

hard to read!

Even for skilled programmers, it is difficult to infer
the intentions of the code author by merely reading the code

Rationale

Intent & Implementation

Debugging

Refactoring

History

Difficulties of Understanding Other’s Code

6

What is the most difficult question if you are
supposed to answer by reading other’s code?

Common Practice in Open Source Community

7

Split a submission into several

small pieces (a.k.a. commit)

Provide line-by-line differences

between commits

Proposed Approach

8

Skeleton
Code

Final
Submitted

Code

Proposed Approach

9

Implement
A()

Implement
B()

Fix error in
C()

Refactor
D()

Skeleton
Code

Final
Submitted

Code

1. insert " def A(): "

2. insert " for i in range(2) "
3. insert " sum += k "

1. See the compiler message

" C : undefined variable k "
2. insert " k = 0 "

Eliph
A web-based peer assessment system

for CS education with code history visualization

Eliph

11

Character-level code history

Execution events

Selection-based

history tracking

Character-Level Code History

12

Selection-Based History Tracking

13

Execution Events

14

executions

Execution
with no error

Execution
with error

Location of
code changes

Execution Events

15

Implement Fix bugs Refactor

Execution
with no error

Execution
with error

Location of
code changes

Testcase #1 : correct
Testcase #2 : correct
Testcase #3 : wrong
score : 80

Exception in thread
"main"
java.lang.ArrayIndexOut
OfBoundsException

Testcase #1 : correct
Testcase #2 : correct
Testcase #3 : correct
score : 100

Evaluation
in a real classroom environment

Visualization of code history

H1 - promotes higher quality of peer feedback

H2 - helps *student to get positive learning outcomes

H3 - improves the **reliability of peer assessment

Hypotheses

*student : assessor + code author
**reliability : the variance of scores given by peers

17

assess with
code history

assess without
code history

Step 1. Feedback Generation

18

58 students

Code
1

Code
2

Code
3

Code
4

Code
5 Code

6

Problem 2

Code
8

Code
7

Code
9

Feedback 1

Feedback 2

Feedback 3

Feedback 4

Feedback 5

Feedback 6

Step 2. Feedback Evaluation

19

Feedback

Feedback

Feedback
Feedback

code author

Feedback
Evaluation 2

Feedback
Evaluation 1

Feedback
Evaluation 3

Feedback
Evaluation 4

Analysis
hybrid method of quantitative and qualitative

H1: Eliph Promotes Higher Quality of Peer Feedback

21

Strongly Disagree

Understand how the code works
39.66% 18.97%

Assess the code
39.66% 22.41%

Provide feedback for the code
39.66% 18.97%

n=58, 5-point Likert scale

Post-feedback Survey from Step 1

Understand the code quickly
36.21% 24.14%

Understand author’s intention
13.79% 68.97%

Strongly Agree

H1: Eliph Promotes Higher Quality of Peer Feedback

nw/=36, nw/o=42, 5-point Likert scale

Feedback Evaluation Result from Step 2

22

3.0 3.2 3.4 3.6 3.8 4.0

w/ code history w/o code history

Peer’s understanding

Improving readability

Improving efficiency

Fairness and unbiasedness

Satisfaction on overall quality

H1: Eliph Promotes Higher Quality of Peer Feedback

"How did browsing the code history help you assess?"

23

H1: Eliph Promotes Higher Quality of Peer Feedback

"How did browsing the code history help you assess?"

By inferring the intention of the code author

"It allowed me to understand ... why they
implemented some of the functions." (Student 13)

24

H1: Eliph Promotes Higher Quality of Peer Feedback

By following the thought process of the code author

"… was helpful in understanding the author’s flow
of thought" (Student 23)

25

"How did browsing the code history help you assess?"

H1: Eliph Promotes Higher Quality of Peer Feedback

By seeing the trial-and-error of the code author

"... I was able to understand where the author had
been mistaken." (Student 4)

26

"How did browsing the code history help you assess?"

H1: Eliph Promotes Higher Quality of Peer Feedback

By understanding the code more easily

"… I didn’t have to understand the entire code at
once." (Student 57)

27

"In cases of code with poor readability, I had to
browse its code history…" (Student 58)

"How did browsing the code history help you assess?"

H2: Eliph Helps Students Get Learning Outcome

28

Learn how to write correct code
41.38%22.41%

n=58, 5-point Likert scale

Learn how to write readable code
36.21%22.41%

Learn how to write efficient code
24.14% 29.31%

Strongly Disagree Strongly Agree
Post-feedback Survey from Step 1

H2: Eliph Helps Students Get Learning Outcome

"How did browsing the code history help you learn?"

29

H2: Eliph Helps Students Get Learning Outcome

By seeing how to write a readable code

30

"I learned some techniques such as naming
variables, …, splitting code into small pieces, which
could prevent potential problems as the code gets
bigger" (Student 14)

"How did browsing the code history help you learn?"

H2: Eliph Helps Students Get Learning Outcome

"How did browsing the code history help you learn?"

By seeing similar ways of coding

31

"I realized that people write code using steps in
different order. I learned more from code written by
someone who codes more like myself." (Student 48)

H2: Eliph Helps Students Get Learning Outcome

By seeing how to overcome errors in specific situations

32

"... watching the trials and errors gave me insights
into particular cases where some approaches
simply don’t work." (Student 33)

"How did browsing the code history help you learn?"

H2: Eliph Helps Students Get Learning Outcome

33

"If a well-written code is given, I could see the
process of writing good code by looking only at the
final version of the code" (Student 51)

"If browsing the code history did not help you learn, why?"

”... it contains wrong or inefficient code." (Student 44)

H3: Eliph Does Not Improve Reliability of Assessment

34

Code Assessment Result from Step 1

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0

w/ code history w/o code history

Efficiency

Readability

Assignment Specifications

nw/=43, nw/o=47

Program Design

• We have introduced Eliph, a web-based peer assessment
system with code history visualization.

• We have showed that Eliph has multiple benefits,

• Looking at the code history helps student assessor
understand the code structure as well as the author's
intention more clearly.

• Overall quality of feedback is higher when evaluated with
the code history.

• Evaluators feel that looking at the code history is helpful for
their own learning.

35

Conclusion

Eliph: Effective Visualization of Code History for
Peer Assessment in Programming Education

Jungkook Park (School of Computing, KAIST)

Yeong Hoon Park (School of Computing, KAIST)

Suin Kim (School of Computing, KAIST)

Alice Oh (School of Computing, KAIST)

pjknkda@kaist.ac.kr

)

Undergraduate CS course
(Data Structure)

Problem 2 Problem 3

Code 1

Code 2

Code 3

Code 4

Code 5

Code 6

Code 7

Code 8

Code 9

with code history
visualization
without code history
visualization

58 students

)
)

assess
• two codes
• each from different problems
• one with history / one without history

Problem 1

Code Assessment (Feedback) Criteria

A. Program Specification / Correctness (30pt) : Auto-graded

B. Program Design (20pt) + Comments
- Excellent (100%), Adequate (80%), Poor (60%), Not Met (0%)

C. Code Efficiency (20pt) + Comments
- Excellent (100%), Adequate (80%), Poor (60%), Not Met (0%)

D. Readability (15pt) + Comments
- Excellent (100%), Adequate (80%), Poor (60%), Not Met (0%)

E. Assignment Specification (15pt) + Comments
- Excellent (100%), Adequate (80%), Poor (60%), Not Met (0%)

Step 1. Feedback Generation

37

)

Undergraduate CS course
(Data Structure)

Problem 2 Problem 3

Code 1

Code 2

Code 3

Code 4

Code 5

Code 6

Code 7

Code 8

Code 9

with code history
visualization
without code history
visualization

58 students

)
)

assess
• two codes
• each from different problems
• one with history / one without history

Problem 1

Step 1: Post-feedback Survey

Section A. Peer Assessment

Q1 ~ Q5 (5-point Likert scale):
{ To understand how code works, To understand the code quckly, …} +
browsing the code history was helpful than viewing the last version of the code.

How did browsing the code history help you assess the code? If it did not, why?

Section B. Learning with Assessment

Q6 ~ Q8 (5-point Likert scale):
{ To learn how to write correct code, To learn how to write readable code, …} +
browsing the code history was helpful than viewing the last version of the code.

How did browsing the code history help you learn to write a good the code? If it
did not, why?

Step 1. Feedback Generation

38

Feedback 1

Problem 1

Code 1 Code 2

...

Feedback 2

...

Feedback 16

...
)

Author 1

Evaluation 1

Evaluation 2

Evaluation 16

...

Evaluate

)
Author 2

Evaluate

17

18

...

30

17

18

30

...
Step 2: Feedback Evaluation Criteria

(5-point Likert scale)

R1. The peer clearly understood my code.

R2. The feedback will help me to improve the style or readability of my

future code.

R3. The feedback will help me to improve the efficiency or to use a better

algorithm for my future code.

R4. I feel the feedback is fair and unbiased.

R5. I am satisfied with the overall quality of the feedback.

Step 2. Feedback Evaluation

39

Quantitative Findings : Post-Evaluation Survey

Browsing the code history was more helpful than
viewing the last version of the code to

Question Pos.(%) Neg.(%) Mean (SD)

understand author's intention of the code 68.97 13.79 3.86 (1.06)

learn how to write correct code 41.38 22.41 3.22 (0.89)

understand how the code works 39.66 18.97 3.19 (0.96)

provide feedback for the code 39.66 18.97 3.19 (0.97)

...

learn how to write efficient code 29.31 24.14 3.09 (0.92)

n=58, 5-point Likert scale
40

Question Pos.(%) Neg.(%) Mean (SD)

understand author's intention of the code 68.97 13.79 3.86 (1.06)

learn how to write correct code 41.38 22.41 3.22 (0.89)

understand how the code works 39.66 18.97 3.19 (0.96)

provide feedback for the code 39.66 18.97 3.19 (0.97)

...

learn how to write efficient code 29.31 24.14 3.09 (0.92)

Quantitative Findings : Post-Evaluation Survey

Browsing the code history was more helpful than
viewing the last version of the code to

n=58, 5-point Likert scale

More positive response
than negative for all questions

support H1(Quality), H2(Learning)

41

Quantitative Findings : Feedback Evaluation

Criterion Exp. Group Control Group P-value

Peer's understanding 3.97 3.79 0.33

Help to improving readability 3.72 3.24 0.04

Help to improving efficiency 3.72 3.21 0.05

Fairness and unbiasness 3.81 3.55 0.31

Satisfaction on overall quality 3.89 3.38 0.04

nexp=36, ncontrol=42, 5-point Likert scale

42

Criterion Exp. Group Control Group P-value

Peer's understanding 3.97 3.79 0.33

Help to improving readability 3.72 3.24 0.04

Help to improving efficiency 3.72 3.21 0.05

Fairness and unbiasness 3.81 3.55 0.31

Satisfaction on overall quality 3.89 3.38 0.04

Quantitative Findings : Feedback Evaluation

Significant effect toward improving
"style" and "efficiency" of the code

nexp=36, ncontrol=42, 5-point Likert scale

support H1(Quality)

43

Criterion Exp. Group Control Group P-value

Peer's understanding 3.97 3.79 0.33

Help to improving readability 3.72 3.24 0.04

Help to improving efficiency 3.72 3.21 0.05

Fairness and unbiasness 3.81 3.55 0.31

Satisfaction on overall quality 3.89 3.38 0.04

Quantitative Findings : Feedback Evaluation

Significant effect toward the satisfaction
on the quality of feedback

nexp=36, ncontrol=42, 5-point Likert scale

support H1(Quality)

44

Quantitative Findings : Assessment Statistics

Assessment
Criterion

Avg. Score P-value

Exp. Group Control Group T-Test Levene-Test

Program Design 18.42 17.87 0.282 0.286

Efficiency 16.37 16.68 0.667 0.539

Readability 13.33 12.70 0.234 0.494

Assignment
Specifications 13.81 14.36 0.309 0.298

Σ 61.93 61.62 0.846 0.710

nexp=43, ncontrol=47
45

Assessment
Criterion

Avg. Score P-value

Exp. Group Control Group T-Test Levene-Test

Program Design 18.42 17.87 0.282 0.286

Efficiency 16.37 16.68 0.667 0.539

Readability 13.33 12.70 0.234 0.494

Assignment
Specifications 13.81 14.36 0.309 0.298

Σ 61.93 61.62 0.846 0.710

Quantitative Findings : Assessment Statistics

No significant difference
in both mean and variance

nexp=43, ncontrol=47

reject H3(Reliability)

46

Qualitative Findings : Post-Evaluation Survey

"How did browsing the code history help you assess?"

Intention It allowed me to understand ... why he
implemented some of the functions.

it was helpful in understanding the author's
flow of thought.

... I was able to understand where the author
was mistaken.

... I didn't have to understand the entire code
at once, ...

Though process

Trial-and-error

Code readability

47

Qualitative Findings : Post-Evaluation Survey

"If it did not (help you assess), why?"

Since it wasn't a big project, I couldn't get
much extra information out of the code history.

It did not help too much because the code was
easy to understand.

... I think code history is something that should
be hidden. ...

48

Qualitative Findings : Post-Evaluation Survey

"How did browsing the code history help you learn?"

I learned some techniques such as naming
variables, splitting code into small pieces, ...

... I feel like I came to realize the right way
how one should write code.

... watching the trials and errors gave me
insight into particular cases some approach
doesn't work.

Writing readable
code

Different code
styles

Trial-and-error

49

Qualitative Findings : Post-Evaluation Survey

"If it did not (help you learn), why?"

If a well-written code is given, I could know
the process and how to write code only
seeing the final version of the code.

Unless peer's code is perfect, seeing that
code history does not seem to have learned
something.

Not much to learn

Poorly written code

50

Quality of Peer Feedback: Quantitative Analysis

H1. Does Eliph promote higher quality of peer feedback?

YES!

Pos.(%) Neg.(%)

Q1 39.66 18.97

Q2 36.21 24.14

Q3 68.97 13.79

Q4 39.66 22.41

Q5 39.66 18.97

Criterion w/
code history

w/o
code history

Peer's understanding 3.97 3.79

Help to improving readability *3.72 3.24

Help to improving efficiency †3.72 3.21

Fairness and unbiasness 3.81 3.55

Satisfaction on overall quality *3.89 3.38
n=58, 5-point Likert scale nw/=36, nw/o=42, 5-point Likert scale

Step 2: Feedback Evaluation ResultStep 1: Post-feedback Survey

*Q1 - Q5 : To do …, w/ code history was helpful than w/o code history.
51

Learning Outcome: Quantitative Analysis

H2. Does Eliph help student to get positive learning outcomes?

Pos.(%) Neg.(%)

Q6 41.38 22.41

Q7 36.21 22.41

Q8 29.31 24.14

n=58, 5-point Likert scale

Step 1: Post-feedback Survey

*Q6 - Q8 : To learn how to …, w/ code history was helpful than w/o code history.
52

YES!

Reliability of Peer Assessment: Quantitative Analysis

H3. Does Eliph improve the reliability of peer assessment?

No.

Assessment
Criterion

Avg. Score (SD) P-value
(Levene-Test)w/ code history w/o code history

Program Design (20pt) 18.42 (2.14) 17.87 (2.59) 0.286

Efficiency (20pt) 16.37 (2.97) 16.68 (3.72) 0.539

Readability (15pt) 13.33 (2.08) 12.70 (2.78) 0.494

Assignment Specifications (15pt) 13.81 (2.97) 14.36 (1.85) 0.298

Σ 61.93 (7.45) 61.62 (7.64) 0.710

Step 1: Code Assessment Result

nw/=43, nw/o=47

No significant difference
in the variance

53

