Eliph: Effective Visualization of Code History for

Peer Assessment in Programming Education

Jungkook Park (School of Computing, KAIST)
Yeong Hoon Park (school of Computing, KAIST)
Suin Kim (School of Computing, KAIST)

Alice Oh (School of Computing, KAIST)

Rapid Growth of Online CS Courses

Numbers of students and TAsS
in online CS courses

year

—_— Students # TAs

Rapid Growth of Online CS Courses

Numbers of students and TAs

N Aanlina OQ Anrirene

@ Class Central » T1A| =74 May 25, 2012

[Coursera] Human-Computer Interaction class starts May 28. Will be the first
class to use the new Peer Assessment system

7

I
OPENedX

Peer Grading Overview | June 13, 2014

year

—_— Students # TAs

Difficulties of Peer Assessment in CS

Peer assessment involves both

“understanding other’s work” and “giving a proper mark”

Grading Rubric

Program Design

Submitted | R ————
Programming Efficiency

Code Readability

Assignment Specifications

Difficulties of Peer Assessment in CS

Peer assessment involves both

“understanding other’s work” and “giving a proper mark”

I’'ve never seen Why this code
this syntax. works? dina Rub

Why did he/she
implement in this way?

This code is too
hard to read!

Difficulties of Understanding Other’s Code

Even for skilled programmers, it is difficult to infer

the intentions of the code author by merely reading the code

What is the most difficult question if you are
supposed to answer by reading other’s code?

Rationale

H Intent & Implementation
B Debugging
B Refactoring

B History

Common Practice in Open Source Community

[MRG+1] FiX (\\lf\r;l/\\ll lll"\l"V\:V\N :If'\ r:v“\fJ:l\V\+DI\I\I‘+:V\N “ FAdit

) 4 WMEEEM sklearn/ensemble/gradient boosting.py
RSl piknkda wants to . - el

(&Y Conversation 6 O C

Commits on Jun 8, 2015

@ @ f@ (@

Use expit func
pjknkda committe

fix float precis
pjknkda committe

fix wrong neg
pjknkda committe

use assert_arr:
pjknkda committe

1
52

de

1:

_score_to_proba(self, score):

proba = np.ones((score.shape[@], 2), dtype=np.float64d)
proba[:, 1] = 1.8 / (1.2 + np.exp(-score.ravel()))
proba[:, 1] = expit(score.ravel())

proba[:, @] -= proba[:, 1]

return proba

Provide line-by-line differences

between commits

_score_to_proba(self, score):

proba = np.ones((score.shape[@], 2), dtype=np.float6d)
proba[:, 1] = 1.8 / (1.2 + np.exp(-2.2 * score.ravel()))
proba[:, 1] = expit(2.0 * score.ravel())

proba[:, @] -= proba[:, 1]

return proba

Proposed Approach

Final

Skeleton Submitted

Code

Code

Proposed Approach

Implement Implement Fix errorin Refactor
A() B() C() D() .
Skeleton i
-0—-0—-0—0— =
Code
[\ Code

1. insert " def A(): " 1. See the compiler message
2. insert " for i in range(2) " " C : undefined variable k "
3. insert" sum +=k " 2.insert"k=0"

Eliph

A web-based peer assessment system
for CS education with code history visualization

Eliph

Eliph — Peer Assessment

Hello, Guest Park! StudentID: 20990114, Problem: Homework 2.1 - Merge Blocks

Code Review Assessment

cs206c¢c/Main.java EXGC UtIO n eve ntS

56 for (Block input : sortedBlocks) { 1 List<Block> mergeBlocks (List<Block> blocks) {
57 if (mergedBlocks.size() == 0) { 2 List<Block> mergedBlocks ArrayList<Block>();
58 mergedBlocks.add(input); 3 List<Block> sortedBlocks ArrayList<Block>();
59 continue; 4

60 } 5 int inputLength = blocks.size();

61 boolean isModified = false; 6 (int i=0; i<inputlength; i++){

62 for (int i=0; i<mergedBlocks.size(); i++) { 7 Block min = blocks.get(0);

63 Block temp = mergedBlocks.get(i); 8 int minInde

64 if (input.start <= temp.start && input.end >= temp.end (Block bl : blocks) {

65 temp.start = input.start; (min.start > bl.start) {

66 temp.end = input.end; min = bl;

67 isModified = true;

68 } }

69 else if (input.start <= temp.start && input.end <= tem blocks.remove()

70 temp.start = input.start; sortedBlocks.add(min);

71 isModified = true;

72

73 . nput.end <= tem (Block input : blocks) {

7s Selection-based (Block. temp-+-mergedsiocks)

75

76 nput.end >= tem s

77 - - Character-level code history
I h|story trackmg aracter-ievel code nistor

79

t.end <= te

11

Character-Level Code History

List<Block> mergeBlocks(List<Block> blocks) 1

mergedBlocks:

12

Selection-Based History Tracking

cs206c¢c/Main.java

// Problem 1
// DO NOT MODIFY THE FUNCTION DECLARATION
ublic static List<Block> readBlocks() {
// Implement here
List<Block> blocks = new ArrayList<Block>();

Scanner input = new Scanner(System.in);
while(input.hasNext()){
int start = input.nextInt();
int end = input.nextInt();
Block temp = new Block(start, end);
blocks.add(temp);
H

return blocks;

// Problem 2

// DO NOT MODIFY THE FUNCTION DECLARATION

public static List<Block> mergeBlocks(List<Block> blocks) ({
// Implement here
List<Block> mergedBlocks = blocks;

int size = blocks.size();
for (int i=0; i<size; i++)({
for(int j 0; j<size; j++){
if (il=j&&j<size&&i<size)({
if (blockIntercept(mergedBlocks.get(j),mergedBlocks.
Block temp = new Block(Math.min(mergedBlocks.get
mergedBlocks.set(i,temp);
mergedBlocks.remove(]j);
if (i<j){
G-z

13

Execution Events

executions
'
" I | ‘ ‘ | — W
Location of Execution Execution
code changes with no error with error

14

Execution Events

Testcase #1 : correct Exception in thread Testcase #1 : correct
Testcase #2 : correct "main” Testcase #2 : correct
Testcase #3 : wrong java.lang.ArraylndexOut Testcase #3 : correct
score : 80 OfBoundsException score : 100
N —— | ‘ ‘ ‘ —— I
_'_I \ J \ J
| |
Implement Fix bugs Refactor
Location of Execution Execution
code changes with no error with error

15

Evaluation
IN a real classroom environment

Hypotheses

Visualization of code history
H1 - promotes higher quality of peer feedback
H2 - helps "student to get positive learning outcomes

H3 - improves the “reliability of peer assessment

“student : assessor + code author

“reliability : the variance of scores given by peers

17

Step 1. Feedback Generation

Problem 2

|

~N
S -
=~ Feqdback 2
Fpedback 6

0

Q \

¢ @.Y

Feedback 3

@ ' Code
\ ' ' Feedback 5

58 students

Feedback1

assess with assess without

code history ~ code history

18

Step 2. Feedback Evaluation

A

V Feedback
A Evaluation 1

Feedback
v Feedback
Feedback code author Feedbgck
v A Evaluation 3
Feedback Feedback
Evaluation 4

19

Analysis
hybrid method of quantitative and qualitative

H1: Eliph Promotes Higher Quality of Peer Feedback

Post-feedback Survey from Step 1
Strongly Disagree Strongly Agree

Understand h(iw the code works

18.97% 39.66%

Understand tr';e code quickly

24.14% 36.21%

Unders';and author’s intention

13.79% 68.97%

Assess the code

22.41% 39.66%

Provide fee’plback for the code

18.97% 39.66%

n=58, 5-point Likert scale

21

H1: Eliph Promotes Higher Quality of Peer Feedback

Feedback Evaluation Result from Step 2

Peer’s understanding

Improving readability

Improving efficiency

Fairness and unbiasedness

Satisfaction on overall quality

3.2 3.4 3.6 3.8 4.0
B w/ code history “ w/o code history nw=36, Nwo=42, 5-point Likert scale

3.

o

22

H1: Eliph Promotes Higher Quality of Peer Feedback

"How did browsing the code history help you assess?"

23

H1: Eliph Promotes Higher Quality of Peer Feedback

"How did browsing the code history help you assess?"

By inferring the intention of the code author

"It allowed me to understand ... why they
Implemented some of the functions." (Student 13)

24

H1: Eliph Promotes Higher Quality of Peer Feedback

"How did browsing the code history help you assess?"

By following the thought process of the code author

"... was helpful in understanding the author’s flow
of thought" (Student 23)

25

H1: Eliph Promotes Higher Quality of Peer Feedback

"How did browsing the code history help you assess?"

By seeing the trial-and-error of the code author

"... Il was able to understand where the author had
been mistaken." (Student 4)

26

H1: Eliph Promotes Higher Quality of Peer Feedback

"How did browsing the code history help you assess?"

By understanding the code more easily

"In cases of code with poor readabillity, | had to
browse its code history..." (Student 58)

"... 1 didn’t have to understand the entire code at
once." (Student 57)

27

H2: Eliph Helps Students Get Learning Outcome

Post-feedback Survey from Step 1
Strongly Disagree Strongly Agree

Learn how to write correct code

41.38%

22.41%

Learn how to write readable code

22.41% 36.21%

Learn how to write efficient code

24.14%

29.31%

n=58, 5-point Likert scale

28

H2: Eliph Helps Students Get Learning Outcome

"How did browsing the code history help you learn?"

29

H2: Eliph Helps Students Get Learning Outcome

"How did browsing the code history help you learn?"

By seeing how to write a readable code

"l learned some techniques such as naming
variables, ..., splitting code into small pieces, which
could prevent potential problems as the code gets

bigger" (Student 14)

30

H2: Eliph Helps Students Get Learning Outcome

"How did browsing the code history help you learn?"

By seeing similar ways of coding

"l realized that people write code using steps in
different order. | learned more from code written by
someone who codes more like myself." (Student 48)

31

H2: Eliph Helps Students Get Learning Outcome

"How did browsing the code history help you learn?"

By seeing how to overcome errors in specific situations

"... watching the trials and errors gave me insights
Into particular cases where some approaches
simply don’t work." (Student 33)

32

H2: Eliph Helps Students Get Learning Outcome
"If browsing the code history did not help you learn, why?"

"If a well-written code is given, | could see the
process of writing good code by looking only at the
final version of the code" (Student 51)

"... It contains wrong or inefficient code." (Student 44)

33

H3: Eliph Does Not Improve Reliability of Assessment

Code Assessment Result from Step 1

Program Design

Efficiency

Readability

Assignment Specifications

—
—

0.0 2.0 4.0 6.0 80 100 120 140 160 180 20.0
B w/ code history ¥ w/o code history Nw=43, Nwio=47

34

Conclusion

- We have introduced Eliph, a web-based peer assessment
system with code history visualization.

- We have showed that Eliph has multiple benefits,

- Looking at the code history helps student assessor
understand the code structure as well as the author's

intention more clearly.

- Overall quality of feedback is higher when evaluated with
the code history.

- Evaluators feel that looking at the code history is helpful for
their own learning.

35

Eliph: Effective Visualization of Code History for

Peer Assessment in Programming Education

Jungkook Park (School of Computing, KAIST)
Yeong Hoon Park (school of Computing, KAIST)
Suin Kim (School of Computing, KAIST)

Alice Oh (School of Computing, KAIST)

pjknkda@Kkaist.ac.kr

Step 1. Feedback Generation

Code Assessment (Feedback) Criteria

A. Program Specification / Correctness (30pt) : Auto-graded

B. Program Design (20pt) + Comments
- Excellent (100%), Adequate (80%), Poor (60%), Not Met (0%)

C. Code Efficiency (20pt) + Comments
- Excellent (100%), Adequate (80%), Poor (60%), Not Met (0%)

D. Readability (15pt) + Comments
- Excellent (100%), Adequate (80%), Poor (60%), Not Met (0%)

E. Assignment Specification (15pt) + Comments
- Excellent (100%), Adequate (80%), Poor (60%), Not Met (0%)

37

Step 1. Feedback Generation

Step 1: Post-feedback Survey

Section A. Peer Assessment

Q1 ~ Q5 (5-point Likert scale):
{ To understand how code works, To understand the code quckly, ...} +
browsing the code history was helpful than viewing the last version of the code.

How did browsing the code history help you assess the code? If it did not, why?

Section B. Learning with Assessment

Q6 ~ Q8 (5-point Likert scale):
{ To learn how to write correct code, To learn how to write readable code, ...} +
browsing the code history was helpful than viewing the last version of the code.

How did browsing the code history help you learn to write a good the code? If it
did not, why?

38

Step 2. Feedback Evaluation

Step 2: Feedback Evaluation Criteria

(5-point Likert scale)

R1. The peer clearly understood my code.

R2. The feedback will help me to improve the style or readability of my
future code.

R3. The feedback will help me to improve the efficiency or to use a better
algorithm for my future code.

R4. | feel the feedback is fair and unbiased.

R5. | am satisfied with the overall quality of the feedback.

39

Quantitative Findings : Post-Evaluation Survey

Browsing the code history was more helpful than
viewing the last version of the code to

Question

understand author's intention of the code

learn how to write correct code

understand how the code works

provide feedback for the code

learn how to write efficient code

Pos.(%) Neg.(%) Mean (SD)

68.97 1379 3.86 (1.06)

..
..
..
..

..

29.31 2414 3.09 (0.92)

40

n=58, 5-point Likert scale

Quantitative Findings : Post-Evaluation Survey

support H1(Quality), H2(Learning)

Browsing the code histor
viewing the last version c

than negative for all questions

More positive response

Question

understand author's intention of the code

Pos.(%) Neg.(%) Mean (SD)

3.86 (1.06)

learn how to write correct code

..

3.22 (0.89)

understand how the code works

..

3.19 (0.96)

provide feedback for the code

..

3.19 (0.97)

..

learn how to write efficient code

..

29.31 24.14 | 3.09 (0.92)

41

n=58, 5-point Likert scale

Quantitative Findings : Feedback Evaluation

Criterion Exp. Group Control Group P-value

Peer's understanding 3.97 3.79 0.33
Help to improving readability | 372 """"""""" it 004 ---------
Help to improving efficiency | N
Faimess and unbiasness | 381355 """""""" 031 -------------
Satisfaction on overall quality | 389 """"""""""" 3 38004 ---------

Nexp=36, Ncontroi=42, 5-point Likert scale

42

Quantitative Findings : Feedback Evaluation

support H1(Quality)

Significant effect toward improving
"style" and "efficiency" of the code p7

aroup Control Group P-value

3.79 0.33

Help to improving readability

Help to improving efficiency

Fairness and unbiasness

Satisfaction on overall quality

..

389 338 0.04

Nexp=36, Ncontroi=42, 5-point Likert scale

43

Quantitative Findings : Feedback Evaluation

Criterion Exp. Group Control Group P-value
Peer's understanding 3.97 3.79 0.33
Help to improving readabilitv 372 324 0.04
support H1(Quality) |~
Haln ta imnrovina effrmerrr— rz—— 3.21 0.05
Significant effect toward the satisfaction }-—— s
on the quality of feedback | 5

Satisfaction on overall quality

Nexp=36, Ncontroi=42, 5-point Likert scale

44

Quantitative FIndings : Assessment Statistics

Assessment Avg. Score P-value

il Exp. Group Control Group T-Test Levene-Test
Program Design 1842 1787 0282 0.286
Efficiency 1637 1668 0667 0.539
Readability 1333 1270 = 0234 0.494
~SNMEN 13.81 14.36 0.309 0.298

Specifications

> 6193 = 6162 0846 0710

Nexp=43, Ncontrol=47
45

Quantitative FINdINgS : Assessment Statistics

reject H3(Reliability)

Assessment
Criterion

Program Design

Efficiency

Readability

Assignment
Specifications

2

No significant difference
Avg. Score In both mean and variance

Exp. Group Control Group T-Test Levene-Test

18.42 17.87

1637 16.68

1333 1270

1381 14.36

6193 61.62

Nexp=43, Ncontrol=47

46

Qualitative Findings : Post-Evaluation Survey

"How did browsing the code history help you assess?"

It allowed me to understand ... why he

Intention implemented some of the functions.

it was helpful in understanding the author's
Though process flow of thought.

... | was able to understand where the author

Trial-and-error was mistaken.

Code read ability at g g/c';den T have to understand the entire code

47

Qualitative Findings : Post-Evaluation Survey

"If it did not (help you assess), why?"

Since it wasn't a big project, | couldn't get
much extra information out of the code history.

It did not help too much because the code was
easy to understand.

... | think code history is something that should
be hidden. ...

48

Qualitative Findings : Post-Evaluation Survey

"How did browsing the code history help you learn?”

Writing readable
code

Different code
styles

Trial-and-error

| learned some techniques such as naming
variables, splitting code into small pieces, ...

... | feel like | came to realize the right way
how one should write code.

... watching the trials and errors gave me
insight into particular cases some approach
doesn't work.

49

Qualitative Findings : Post-Evaluation Survey

"If it did not (help you learn), why?"

Not much to learn

Poorly written code

If a well-written code is given, | could know
the process and how to write code only
seeing the final version of the code.

Unless peer's code is perfect, seeing that
code history does not seem to have learned
something.

50

Quality of Peer Feedback: Quantitative Analysis

H1. Does Eliph promote higher quality of peer feedback?

Step 1: Post-feedback Survey

Pos.(%) Neg.(%)

Q1 39.66 18.97

Q2| 3621 2414
Q3| 6897 1379
Q4 | 3966 2041
Qs | 3966 1897

n=58, 5-point Likert scale

YES!

Step 2: Feedback Evaluation Result

Criterion

w/ w/0

Peer's understanding

code history code history

..

Help to improving readability 372 | 3.24

Help to improving efficiency t3.72 = 3.21

..

Fairness and unbiasness 381 | 355

..

Satisfaction on overall quality ‘389 = 3.38

*Q1-Q5:Todo ..., w/ code history was helpful than w/o code history.

51

Nw/=36, Nwo=42, 5-point Likert scale

Learning Outcome: Quantitative Analysis

H2. Does Eliph help student to get positive learning outcomes?

YES!

Step 1: Post-feedback Survey

Pos.(%) Neg.(%)

Q7 | 3621 2241

Q8 2031 24.14

n=58, 5'-point Likert scale

*Q6 - Q8 : To learn how to ..., w/ code history was helpful than w/o code history.
52

Reliability of Peer Assessment: Quantitative Analysis

H3. Does Eliph improve the reliability of peer assessment?

Step 1: Code Assessment Result

Assessment
Criterion

NO.

No significant difference
In the variance

Avg. Score (SD)

P-value
(Levene-Test)

Program Design (20pt)

Efficiency (20pt)

Readability (15pt)

Assignment Specifications (15pt)

w/ code history w/o code history

18.42 (2.14)

...

...

...

13.81 (2.97)

61.93 (7.45)

17.87 (2.59)

14.36 (1.85)

61.62 (7.64)

53

Nw/=43, Nwio=47

